العلاقة مابين الفضاء Τ1 والدالة عديمة النمو د . أسامة عبدالسلام الشفح ـ كلية العلوم بصبراتة ـ جامعة الزاوية ## ملخص البحث: لنفرض أن X مجموعة ما و $X \to X$ دالة عديمة النمو في هذه الحالة A نجد أن $g(X) = g_{fix}$ وإذا فرضنا أن $g(A) = A \cup g(A)$ لكل مجموعة X محتواة في المجموعة X فإن الدالة g يمكن أن تعرف تبولوجيا فوق X سوف نسميها بالتبولوجيا المتولدة بالدالة g ونرمز لها بالرمز σ_g . الآن إذا كان لدينا الثنائي $\sigma_g(X)$ عبارة عن فضاء $\sigma_g(X)$ سوف نبين أن $\sigma_g(X)$ عبارة عن فضاء $\sigma_g(X)$ سوف نبين أن $\sigma_g(X)$ عبارة عن فضاء $\sigma_g(X)$ النمو والفضاء التبولوجي المتقطع . # Relationship Between T_1 -space and An Idempotent function #### **Abstract:** Let X be a set and $g: X \to X$ be an idempotent function. In this case we have $g(X) = g_{fix}$, and if we defined $C(A) = A \cup g(A)$ for all $A \subseteq X$ then g can determines a topology in a set X we will call it a topology induced by a function g and denote to it by τ_g . Now if (X, τ_g) is a T_1 -space we will show that g must be an idempotent map and X must be a discrete topological space. **Key words:** An idempotent function , discrete space , T_1 -space. #### **Introduction:** If we have a finite T_1 -space (X, τ) , then (X, τ) must be a discrete topological space, because if we suppose that (X, τ) is an any finite T_1 -space. Then by [Theorem 1-4] every single subset $\{x\}$ of X is closed in (X, τ) . Since X is finite, it follows that any subset of X is closed, since it is a finite union of closed single sets. Thus any subset of X, as a complement of a closed set, is open in X, and hence X is a discrete space. But now the equation is that: Can we get the same resale if X is an any set (may it is not finite set)?. Theorem 2-7 will show that for any X, the pair (X, τ_g) is a T_1 -space where g is an idempotent function ,and τ_g is a topology induced by the map g. ## 1- Basic Concepts: #### **Definition 1-1** Let X be any set, then a function $g: X \to X$ is said to be an idempotent function if : $g^2 = g \circ g = g$. #### Example 1-2 Let $X = \{a, b, c\}$ and let g: $X \rightarrow X$ defined by: $$g(x) = \begin{cases} x & \text{if } x \neq b \\ a & \text{if } x = b \end{cases} \quad \text{for all } x \in X.$$ Then $$g(g(a)) = a = g(a),$$ $g(g(b)) = a = g(b),$ $g(g(c)) = c = g(c)$ and g(g(c)) = c = g(c). Therefore $g^2(x) = g(x)$ for all $x \in X$, and hence g is an idempotent function. #### **Definition 1-3** A topological space X is a T_1 -space if and only if when ever x and y are distinct points in X, there is a neighborhood of each not containing the other. #### **Theorem 1-4 [2]** Let X be any topological space then the following are equivalent: - (1) X is T_1 -space. - (2) $\{x\}$ is closed for all $x \in X$. - (3) For any $A \subseteq X$, $A = \bigcap \{U : U \text{ is open }, A \subseteq U\}$. ## **Theorem 1-5 [2]** Given a set X and any family Ψ of subsets of X satisfying the conditions: - (1) Any intersection of members of Ψ belongs to Ψ . - (2) Any finite union of members of Ψ belongs to Ψ . - (3) Φ and X both belong to Ψ . Then the collection of complements of members of Ψ is a topology on X in which the family of closed sets is just Ψ . #### **Theorem 1-6 [2]** If we have a set X and a mapping $g: P(X) \rightarrow P(X)$ satisfying the conditions: - (a) $A \subseteq g(A)$ for any $A \subseteq X$. - (b) g(g(A)) = g(A) for any $A \subseteq X$. - (c) $g(A \cup B) = g(A) \cup g(B)$ for any $A,B \subset X$. - (d) $g(\Phi) = \Phi$. Then g defines a topology on X in which the closure of A in Xis g(A), and the closure operation is just g. ## 2- Topologies induced by an idempotent functions: **Definition 2-1** Let g be an idempotent function on a set X. Then we define: - (1) $g_{fix} = \{x \in X : g(x) = x\}$ - (2) $C(A) = A \bigcup g(A)$ for all $A \subseteq X$. ## **Theorem 2-2 [3]** Let $g: X \rightarrow X$ be an idempotent function. Then the operation $C: P(X) \rightarrow P(X)$ defined by $C(A) = A \bigcup g(A)$ for all $A \subseteq X$ is a topological closure operation in the set X. #### **Definition 2-3** Let $g: X \rightarrow X$ be an idempotent function, and let C $:P(X) \rightarrow P(X)$ defined by $C(A) = A \cup g(A)$ for each $A \subseteq X$ and let $\Psi = \{C(A) : A \subset X\}$. Then the topology $\tau_g = \{F^c : F \in \Psi\}$ is called the topology induced by the map g. ## Example 2-4 Let X be any set and let $i:P(X)\rightarrow P(X)$ be the identity map then i is an idempotent map and the topology induced by *i* is the discrete topology. ## **Theorem 2-5 [3]** Let $g: X \rightarrow X$ be an idempotent map then: - (a) $g_{fix} = g(X)$. - (b) For every element x of X the one element set $\{x\}$ is closed in the topology induced by g if and only if $x \in g_{fix}$. #### Theorem 2-6 The frontier of any one element set in (X, τ_g) where τ_g is the topology induced by an idempotent map g is either empty or a one element set. #### **Proof:** Suppose that (X, τ_{σ}) is a topological space, where τ_{σ} is the topology induced by an idempotent map g, and suppose $Fr(\{x\})$; that is (frontier of $\{x\}$) is not empty and not a one element set for some $x \in X$. Let $y, y' \in Fr(\{x\})$. Where $y \neq y'$, so $y, y' \in C(\lbrace x \rbrace) \cap C(X \setminus \lbrace x \rbrace) = [\lbrace x \rbrace \bigcup g(\lbrace x \rbrace)] \cap [(X \setminus \lbrace x \rbrace)]$ $\{x\} \bigcup g(X \setminus \{x\})]$, so $y, y' \in \{x\} \bigcup g(\{x\})$, and $y, y' \in (X \setminus \{x\}) \bigcup g(\{x\})$ $\{x\}$) $\bigcup g(X \setminus \{x\})$ \rightarrow (I) So we have two cases: # *Case* (1) If $y \neq x$, $y' \neq x$, then by (I) we have $y, y' \in g(x)$. So g(x) = y, and g(x) = y', where $y \neq y'$ which is a contradiction. #### *Case* (2) If x = y or x = y'. Suppose x = y', then $x \neq y$. So by (I) we have $x, y \in \{x\} \bigcup g(x)$, so $y \in g(x)$, and hence g(x) =y. Since $x, y \in (X \setminus \{x\}) \cup g(X \setminus \{x\})$, $x \notin (X \setminus \{x\})$, so $x \in X$ $g(X \setminus \{x\})$, and there exists $z \in (X \setminus \{x\})$ such that g(z) = x. Now $(g \circ g)(z) = g(g(z)) = g(x) = y$ that is $(g \circ g)(z) = y \neq g(z) = x$ which is a contradiction . So $Fr(\{x\})$ is either empty or a one element set for any $x \in X$. #### Theorem 2-7 If (X, τ_g) is a T_1 -space, then g is the identity map and τ_g is the discrete topology. #### **Proof:** Let (X, τ_g) be a T_1 -space, then by [Theorem 1-4] every one element set $\{x\}$ is closed, so $C(\{x\}) = \{x\}$ for all $x \in X$ But $C(\{x\}) = \{x\} \bigcup g(\{x\}) = \{x\}$; that is $g(\{x\}) = \{x\}$. Therefore $x \in g_{fix}$ for all $x \in X$, and since g(x) = x for all $x \in X$, so g is the identity map. Now we need to prove that τ_g is the discrete topology on X, since g(A) = A for all $A \subseteq X$, and since $C(A) = A \bigcup g(A) = A \bigcup A = A$, so any subset of X is a closed set, and for any $x \in X$ we have $A = X \setminus \{x\}$ is a closed set, so $\{x\}$ is an open set in X, and hence τ_g is the discrete topology. #### **References:** - [1]. Alberta, General Topology, Addison-Wesley publishing Company, Inc. 1968. - [2]. Stephen Willard, General Topology, Addison-Wesley Publishing Company, Inc. (1970). - Waldemar Korczynski, Mathematica, Vol. 37 No. 4. (2004), 761-772. [3].